Nedstack fuel cell technology

Jorg Coolegem
ICAE2016, Beijing, Oct 10th 2016
Company Profile

• Founded in 1999

• Based in The Netherlands

• Independent fuel cell stack manufacturer
 - Supplier to system integrators, serving world-wide markets
 - Installed base in Europe, US, Africa, Asia
 - Extensive system integration know-how

• Member of a Dutch-based group with over 40 years worldwide experience in prime power, power generation and UPS-solutions
Unique features of the Nedstack PEM fuel cell stack

Unique features

- Product range allows for fit for purpose choice:
 - Power range: 2-10 kW per stack
 - HP for low cost and back-up: > 4,000 hr & > 1250 start-stops
 - XXL for long life: > 20,000 hr

- Liquid cooled
- High power density
- High fuel efficiency
- Low parasitic losses
- Easy to integrate, reliable and robust
Nedstack system integration track record

Over 700 telecom back-up stations since 2007

5 kW off-grid telecom power supply

14 kW off grid power supply demonstration unit FC with ethanol reformer

70kW demonstration power plant running >50,000 hrs since 2007

1MW plant at Solvay chlorine plant
Nedstack’s commercial focus

- Telecom power supply
- Grid equipment back-up and P2P
- Transport
- Industrial CHP
Nedstack business model

Description

- Raw materials and component supply
 - Carbon
 - Membrane
 - Electrode
 - Assemblies
 - Aluminum parts

- Fuel cell stack production
 - Produce cell plates
 - Assemble fuel cell stacks
 - Provide system integration know-how
 - Create market pull from end user

- System integration
 - Design fuel cell system (application)
 - Assemble systems
 - Sell and install systems
 - Service systems
 - (Run fuel supply chain)

- End user
 - Run the system
Nedstack in transport initiatives

E-trucks Europe

First Chinese car (chery SUV)

HyMove bus with:

30 kWe range extender
70 kW PEM demonstration Power Plant

At AkzoNobel’s Delfzijl chlorine plant

• > 50,000 hours on grid
• Stack life in field conditions over 23,000 hours
• Reliable operation, low maintenance costs
• Fully automated, remote monitoring
• Mobile set-up
FCS-XXL stacks: stable performance, long life

- Unique stack performance and lifetime under real, industrial conditions (Delfzijl)
Cogeneration of AC-power and heat

Hydrogen

Fuel cells

DC power

Inverter: 400 VAC

Transformer

Heat 65 °C

AC Power (6-10 kV)
System overview

- System can be remotely monitored and operated
Monitoring of stack performance

- All stacks in the plant can be individually monitored:
2 MWe PEM Power Plant - China
Preliminary performance data

Plant performance

- Nominal fuel cell output: 2000 kW
- Fuel cell efficiency (LHV): 55 %
- Auxiliary consumption: 120 kW
- BoP efficiency: 90 %
- Electrical efficiency: 50 %
- Available heat @ 60°C: 950 kW
- Total efficiency: 77 %

Stack performance: plant vs. QC test

![Graph showing stack performance comparison between QC and 2MW plant]
Business case for a MW PEM Power Plant
Depends largely on local situation

1) Assuming hydrogen would otherwise be burnt and now will have to be substituted by natural gas
Hydrogen Market Overview
Thank you

Jorg Coolegem
Manager Customer Development

Phone +31 (0)26 319 7652
E-mail jorg.coolegem@nedstack.com

This work was carried out in the framework of the FP7-FCH-JU project “DEMCOPEM-2MW”, cofounded by the FCH JU under grant agreement n° 621256.