

Modular Fuel Cell Power Solutions

For an absolute Zero Emission future

The Generation 3 is a modular hydrogen fuel cell system, producing electricity and heat only emitting water. It's unique design separates the fuel cell module from the air supply, enabling easier integration optimal operation. This next step in the PEMFC systems, enhances efficiency and accelerates sustainability in power generation.

Performance

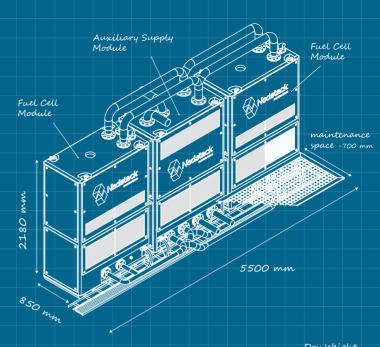
Peak Power Beginning of Life	1000 kW
Prime Power	900 kW
Nominal Power	700 kW
Stack Operation Temperature	65 °C
Ramp Up Time	20 %/s
Start Up Time	<60 s
Voltage Output	800 VDC
Current Output	2 x 765 A

Environment

Air Supply	Ambient
Height (Altitude)	max 2000 m
Water Production (100% load)	~300 kg/h
Operating Temperature	-25°C to 45 °C ¹
Storage Temperature	-45°C to 55 °C 2
Process Air	935 Nm³°⁄h
Ventilation	500Nm³/h

Cooling

Maximum heat generation (EoL) Maximum Supply Temperature Maximum Return Temperature


Efficiency and hydrogen consumption

Net Output		ведіп	ining		_ire		Ena	OT LITE	Э		
110% load	1000 kW	49.5%		60.c) kg	/h	-				
100% load	900 kW	50.3%		53.1	. kg	/h	43.9	%	60.8	3 kg	/h
80% load	700 kW	51.9%		40.0) kg	j∕h	45.6	%	45.5	; kg,	⁄h
50% load	450 kW	53.7%		25.0) kg	/h	47.5	%	28.2	2 kg.	⁄h
25% load	225 kW	51.9%		12.4	kg	/h	48.4	.%	13.8	kg,	′h
5% load	50 kW	48.0%		3.2	kg/	'n	48.0	%	3.2	kg/	1 🗌
Inlet pressure			≥2	bar							
Hydrogen Stanc	lards ³		Тур	e I,	Gra	de E, C	atec	gory 3			

Compliancy


Standard	5						
Maritime	Apr	orov	/al	(in I	oroc	ares	<u>(</u>

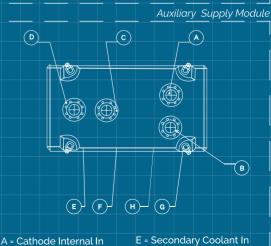
	IEC-62282-3
orogress)	Bureau Veritas, RINA

Dry Weight 4300 Kg

A = Cathode Air In B = Cathode Air Exhaust

B = Cathode Internal Out

C = Cathode External In


D = Cathode External Out

1200 kWt

≤ 35 °C

60°C

- C = Ventilation FC Space <u>D = Anode In</u>
- E = Anode Out F = Secondary Coolant In
- G = Secondary Coolant Out

- F = Secondary Coolant Out
- G = Tertiary Coolant In
- H = Tertiary Coolant Out

- Auxiliary supply required when shutdown
- Decommissioned storage only
- Contact Nedstack for other hydrogen purities

(в)